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doubtlessly creates difficulty in solving the intensity 
distribution in diffraction topographs for various types 
of imperfection. This complexity merely reflects the 
fact that, in an imperfect crystal, the beams tend to 
spread out as they scatter from different places in the 
crystal, and conversely, the beams at one point are 
under the influence of many beams created at different 
locations before they reach that point. 

If one can assert that the beams inside the crystal 
proceed along a path, then the integral equation (7.9) 
can be reduced to a differential equation and the 
matrix becomes the matricant of the system. In this 
case, the determination of the path itself becomes a 
separate problem. For instance, in the calculation of 
the propagator 9 in § 6, one could have employed the 
approximation of the stationary phase, as demonstrated 
previously by Kuriyama (1968). Then, by retaining 
only the anomalous transmission mode, a path could 
have been established. Along this path, the final equa- 
tion could have assumed a differential equation form, 
making the W matrix a matricant. The diffraction con- 
ditions in high-energy electron diffraction make this 
approximation practical, since the Bragg angles are 
extremely small. 
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A quantitative relation is obtained between Bijvoet differences and the deviations from centrosymmetry " 
of a structure. An expression is derived for the root-mean-square value of A, where 

N 
A=[I(H)-l(f i ) ] /a~,  a2= Y. fJ, 

J=l 
ih terms of (IAral > and k" where Arj are the deviations in atomic coordinates from ideal centrosym- 
metry, and k" = Af"/f ' .  Curves are given connecting r.m.s. A with (IArA) for a two-dimensional hypo- 
thetical model. When (IArjl) is small the r.m.s. A is quite sensitive to (IAuI) with a moderate 
anomalous scatterer present in the structure. The behaviour of the Bijvoet ratio is also studied empirically. 

1. Introduction 

In a recent paper from this laboratory (Srinivasan & 
Vijayalakshmi, 1972) the use of X-ray anomalous scat- 
tering as a sensitive tool for resolving the space-group 
ambiguity of dibenzyl disulphide was discussed. The 

* Contribution No. 371 from the Centre of Advanced 
Study in Physics~ University of Madras, Madras-600025, India. 

use of X-ray anomalous scattering effects for. space 
group determination is well known (Okaya & Pepin- 
sky, 1961 ; Ramachandran & Parthasarathy, J963; 
Parthasarathy & Ramachandran,  1963). However~ it 
has not been apparent that it could be used success- 
fully in cases where the distinction between alternate 
space groups is a subtle one involving small deviations 
from centrosymmetry. This was in fact the case with 
dibenzyl disulphide where it was shown that if the 
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structure proposed in the space group Cc were correct, 
which involved mean deviations of ~ 0.05 A in atomic 
coordinates from ideal centrosymmetry, significant Bij- 
voet differences were to be expected theoretically for 
a reasonable number of reflexions. The failure to ob- 
serve any such Bijvoet differences supported strongly 
the space group C2/c. This led us to a study of the quan- 
titative relation between the Bijvoet differences and the 
amount of deviation from centrosymmetry. In this 
paper we work out such a relation between a con- 
venient statistical parameter involving the Bijvoet dif- 
ferences and the deviations from ideal centrosymmetry. 
The results are verified using a hypothetical two-dimen- 
sional model structure. 

2. Derivation of formulae 

The statistical distribution of Bijvoet differences has 
been treated earlier (Parthasarathy & Srinivasan, 1964; 
Parthasarathy, 1967). While, in principle, one can work 
out any of the statistical parameters such as the mean 
value of the Bijvoet difference A I = [ I f H ) - I ( f i ) ] ,  the 
Bijvoet ratio X=AI/½[I(H)+I(f i )]  or other similar 
quantities, we will use in this paper mainly the root- 
mean-square value of the quantity A defined by 

Z =(AI)/(a~) (1) 
N 

where ~ = ~f j2 .  The Bijvoet ratio X, although it has 
J = l  

some practical advantages, is more difficult to handle 
theoretically. Its use in this paper is confined to an 
empirical comparison with the r .m.s .d .  

2.1 Small deviations from centrosymmetry 
It is useful to deduce first the r.m.s, value of A for 

a non-centrosymmetric structure containing N atoms 
in random positions, some of which (P) scatter anom- 
alously and the rest (Q) scatter normally. We will also 
assume that there is only one kind of anomalous scat- 
terer present. The Bijvoet difference AI in such a case 
is given by the general expression (Parthasarathy & 
Srinivasan, 1964), 

AI= 4[A~B; - A~2 B~I . (2) 

The average ((AI) 2) can be obtained from (2) by 
squaring the right-hand side and expanding. Since the 
contributions from the P and Q atoms are indepen- 
dent, only the square terms survive on averaging, lead- 
ing to 

((AI)Z)=16k"Z[(A'ff) (B~,2)+ (A~, 2) (B~Z)] (3) 

where k " =  Af" / f ' .  
From (3) it is readily deduced using the standard 

results, 

that 
( A T ) =  (BT)=a~,/2 , (A'QZ)= (B'o2)=a~/2 , 

((AI)2) = 8 k"2a~,a~, 

/, q 
where @ =  ~f~ ,  4 =  ~f~.  Thus the r.m.s, value of A 

J J 
becomes 

(A2) 1/2 = 2 V2k ''ala2, (4) 
where 

al = av/aN and 0" 2 = t T O / t 7  N • 

Consider now a non-centrosymmetric crystal con- 
taining N atoms, P of which are anomalous scatterers, 
all alike. Let us assume that these N atoms have an 
approximate centre of symmetry; that is to say, they 
are obtained by introducing small random deviations 
in the atomic coordinates of an initial structure having 
an exact centre of symmetry. If the coordinates of one 
half of the atoms are denoted by r m, j =  1 , 2 , . . .  N/2 
those of the other half related by an approximate 
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Fig. 1. R.m.s. A versus a' for a hypothetical model with the P 
group centrosymmetric. Ranges marked near each graph 
pertain to (sin 0)/2 values. 
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Fig. 2. R.m.s. A versus a" for a hypothetical model with errors 
in both P and Q atoms. Ranges marked near each graph 
pertain to (sin 0)/2 values. 
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centre of  symmetry  may be written as r ~ j = - r N j +  
Ar m . 

The contr ibut ions to the real par t  of  the structure 
factor f rom a pair  of  a toms at rj  and - r j  + Arj takes 
the form 

where 

Aj=fj[cos ej+cos ( - e j+   uj)] 
=f j [cos  ~j(1 + c o s  ~ , j )+s in  ~pj sin g/j] 

q~j =2z~H. rj  and ~, j=2zcH. Ar j .  

(5) 
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Fig. 3. Comparison of r.m.s. A (dots) and mean Bijvoet ratios 
(circles) as a function of (IArA) for the case of no errors in 
P atoms (P = 2, Q = 14). Theoretical curve of r.m.s. A versus 
(IdrA) shown by thick line. Theoretical limiting values of 
(IXl) and r.m.s. A for large errors are the dotted lines marked 
0.0985 and 0.14 respectively. 
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Fig. 4. Comparison of r.m.s. A (dots) and the mean Bijvoet 
ratio (circles) as a function of (IdrjI) for the case of errors 
in both P and Q atoms (P=4, Q= 12). Theoretical limiting 
values of (IXI) and r.m.s. A for large errors are the dotted 
lines marked 0"0825 and 0"114 respectively. 

The total  contr ibut ion from P/2 such pairs will give 
for 

PI2 

A~,= ~ A~oj= ~f~,a[cos ¢l,,(1 +cos  ~'pj) 
J 

+ sin ep~ sin ~upj]. (6) 

We require in (3) typically a quant i ty  (A~,2). It  is read- 
ily seen that  if the coordinates xj,~, y~,j, zpj, are random,  
(cos ~j,j) = (sin fpej) = 0, (sin s ~ej)  = (cos 2 ~v~) = ½. 
Also, if the errors Arj are Gaussian,  it is readily shown 
that  (sin ~ ,~)=0 since + A r j  and - A r j  are equally 
probable.  We note that  (cos ~,p~) exists and let 

D e =  (cos ~ e l ) -  

With these assumptions (A~, 2) f rom (6) can be shown 
to reduce to 

wherein the average De for all the P atoms has been as- 
sumed to be the same and also Are.l are assumed to be 
independent  of  I've. 

An exactly similar procedure leads us to the relation 

The forms of  expressions (7) and (8) can be used for 
the components  A o and B~ also with the only change 
that  De in (7) and (8) will be replaced by D o , where 
D o = (cos 2zcH. Aroj  ). With these substitutions equa- 
t ion (3) can now be shown to reduce to 

((AI)2) = 8 k " 2 a ~ , a ~ ( 1 - D e D o )  (9) 
so that  

(A2) 112= 21/2 k " a l a z a '  (10) 
where 

a' = 1/1 - D e D  o . 

When the errors in the P atoms are zero, expression (8) 
reduces to 

(d2)u2 =21/2 k " a l a a ( 1 - D ) a  I/z (11) 

This will be of  some practical interest since struc- 
tures with just  two heavy atoms in the unit  cell are 
not  uncommon  and the above equation will be applic- 
able for such cases. We may  notice that  r.m.s, value 
of  A will be zero when all the Arj 's are zero and tha t  
it will be 21/2ala2 k"  when the Arj 's are very large as 
obviously it should be since this corresponds to equa- 
t ion (4) already deduced for the ideally non-centrosym- 
metric structure. 

It  has been shown (Luzzati, 1952) that  for a two- 
dimensional case, when Arj 's have a Gaussian distribu- 
tion D can be given by the expression 

D = exp - (4nlHI ~(IArl)5). (12) 

Substi tution of  this expression in (10) enables us to 
obtain the theoretical curve of  r.m.s. A against 
(IzlrA). 
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3. Verification of the theoretical results 

3.1 Calculations on a hypothetical model 

The results derived above have been verified using 
a hypothetical two-dimensional model. An orthogonal 
unit cell of dimensions a =5 .0  and b=10.0  /k was 
taken in the plane group p2. Two cases were con- 
sidered; in Case I, two of the 16 atoms were assumed 
to be anomalous scatterers (viz., sulphur) and the rest 
non-anomalous scatterers (nitrogen). Since there are 
only two atoms in the P group, they are automatically 
centrosymmetric and hence Zlrpj = 0. This case provided 
data to check equation (11). 

In the second case, four out of the 16 atoms were 
assumed to be anomalous scatterers (sulphur) and the 
remainder, non-anomalous (nitrogen). This provided 
data to check equation (10). In each of these cases, dif- 
ferent sets of calculations were performed, each set 
corresponding to the introduction of small errors* in 
the coordinates of the atoms, destroying the centro- 
symmetry. These sets correspond to (I zlrjI) = 0.01,0.025, 
0.05, 0.075, 0.1, 0.25, 0.35 and 0.5 A. The shifts were 
given arbitrarily in random directions and it was also 
checked that ( ~ U ) = 0 .  The r.m.s. A was calculated 
for each set using the calculated structure factors. An 
isotropic temperature factor of B=2.5  /~2 was used 
for all the atoms.  Anomalous dispersion values used 
for sulphur were Af '=0 .319 and Af"=0 .557  (for 
Cu Kc0. In addition to r.m.s. ~ the Bijvoet ratios X 
were also calculated, to study their behaviour em- 
pirically. 

The results for both the cases are plotted graphically 
in Figs. 1 and 2 and listed in Table 1. 

Table 1. Observed and theoretical values of  k"  for  model 
structure with two anomalous scatterers (case I) and 

four anomalous scatterers (case II) 

(k")ob~ 
(sin 0)/2 Case I Case II (k")x, 

0"200 0"045 0"052 0"050 
• 0"400 0"070 0"066 0"071 

0"575 0"079 0"086 0"082 

From equation (10), the plot of r.m.s. A against a '  
should be linear with a slope equal to 21/2 k"o'lcr2. This 
result can be expected to be true only in regions of 
(sin 0)/2 within which k"  (and also at and a2) can be 
assumed to be a constant. Accordingly in Figs. 1 and 
2 resutts for three groups of reflexions for regions of 
(sin0)/2 0.1-0.3, 0.3-0-5 and 0.5-0.65 are shown. 
From the slopes of these graphs and knowing ala2 for 
each range, k"  has been deduced and is entered as 
(k")obs in Table 1. As is to be expected from theory, 

* The mean errors in P and Q atoms were made equal for 
for convenience. Thus 

( Idre j l )  = (l.4rQj[) = (IArjI). 

the graphs are linear in Figs. 1 and 2 and also the k"  
deduced agrees fairly well with the mean value of k"  
calculated for the different ranges from a krowledge 
of zlf" and f '  (entered as (k")Th in Table 1). 

, ,  

3.2 Empirical behaviour o f  r.m.s. A 
The calculations on the hypothetical model were 

used to study the variations of r.m.s. A with different 
values of ([Au]). This is compared with the theoretical 
curves obtainable using expression (12). Incidentally, 
the values of ([X[) were also calculated and its varia- 
tion as function of ([Arj]) could thus be studied em- 
pirically. 

These two results are shown graphically in Figs. 3 
and 4 for both cases I and II. The observed r.m.s. A 
may be seen to follow closely the theoretical curve. For 
the Bijvoet ratio, although the theoretical curve is not 
available the limiting value for large errors can be 
estimated from the results of Parthasarathy (1967) and 
is indicated in Figs. 3 and 4. It may be noticed from 
Figs. 3 and 4 that both r.m.s. A and QX]) uniformly 
increase as (IArjI) increases, reaching the value for the 
random case asymptotically. The behaviour of the 
curves for small values of ([AuI) is interesting in that 
it rises rather steeply in this region. This signifies the 
rather high sensitivity of the Bijvoet differences for 
small deviations from ideal centrosymmetry. In fact, 
the curve for the Bijvoet ratio appears to rise much 
more steeply compared to r.m.s. A and appears to be, 
therefore, more sensitive. The observed points for the 
Bijvoet ratio for Case II alone seem to have rather 
large scatter and this may be because the number of 
P a toms is perhaps not sufficiently large for a good 
randomization. Nevertheless, the broad feature that is 
apparent is that (1i'1) values are systematically larger 
than the r .m.s .d .  A theoretical treatment of (]X]) is 
perhaps worth while although it is likely to be dif- 
ficult to handle compared to r.m.s. A which we have 
studied here. 
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